
Molecules: What Kind of a Bag of Atoms?†

Praveen D. Chowdary and Martin Gruebele*
Department of Chemistry, Department of Physics, and Center for Biophysics and Computational Biology,
UniVersity of Illinois at Urbana-Champaign, 600 South Mathews AVenue, Urbana, Illinois 61801

ReceiVed: April 3, 2009; ReVised Manuscript ReceiVed: June 19, 2009

As discussed by Liang and Dill, Enright and Leitner, and others, proteins are not 3D objects. We study an
expanded macromolecular data set ranging from proteins to RNA, lipids, and viruses, and remove surface
effects and size bias. Molecules and molecular assemblies with more than 1000 backbone atoms have a
volume fractal dimension of DV ) 2.70 ( 0.05 by the embedded sphere method and DV ) 2.71 ( 0.04 by the
ensemble method using radius of gyration as the size measure. The much larger DV ) 2.89 ( 0.05 obtained
with the average surface radius as the length measure shows that surface corrugation is as extensive as cavity
formation. Using a simple “Swiss cheese” model for molecules, we show that the distribution of voids in the
interior of molecules cannot be a Boltzmann distribution of void energy as a function of void size. Instead,
frustration from imperfect packing builds up with molecular size, allowing larger voids to form in larger
molecules. We find that large molecules lie halfway between the extremes of packing for homogeneous objects
(D ) 3) and Apollonian packing, which accounts for packing of a hierarchy of random-sized objects (D ≈
2.47).

Introduction

Bob Field once famously mused about whether molecules
approach the “bag of atoms” limit when energy is dumped into
them. At chemical excitation energies, small organic molecules
maintain much order in their vibrational state space and do not
get to that limit.1 Yet in a different sense, large molecules do
resemble bags of atoms: they fold back onto themselves, with
myriad weak interactions such as hydrogen bonds, van der
Waals contacts, or salt bridges lowering the energy of compact
structures compared with extended structures. Protein folding
is perhaps the most famous example, but any molecule that is
large enough will interact with itself via through-space
interactions.

As they pack against themselves, large molecules and
molecular assemblies contain a distribution of different-sized
voids. There is rich literature on their packing.2-5 Analyses of
proteins by the Dill,2 Leitner,3 and Zebende4 groups reveal a
mass scaling dimension of Dm ≈ 2.5 by either embedding
variable-size spheres within proteins or plotting mass against a
measure of size (diameter, number of residues, etc.) for an
ensemble of proteins. In addition, Klafter and coworkers have
derived equations connecting the mass dimension to protein size
and spectral dimension.5 In some of the literature, the packing
is compared with a hard sphere liquid near the percolation
threshold (D ≈ 2.5).2,6 Large molecules evidently contain a
hierarchy of different-sized voids that makes them less than 3D
objects.

Here we analyze a larger number of packed molecular
structures ranging in size from small peptides to virus particles
and covering macromolecules such as proteins, RNAs, and
lipids. We remove both surface intersection bias and sample
size bias. We use two methods. The embedded sphere method
yields a volume fractal dimension of DV ) 2.70 ( 0.05, slightly
larger than previous results. The ensemble method yields DV )

2.71 ( 0.04 when the radius of gyration (Rg) is used as a size
measure, which is in good agreement with the embedded sphere
method. The slightly larger than previously estimated values
are accounted for by the larger data set and the removal of
sample size bias.

We can draw some new conclusions about the approximately
fractal nature of void spaces within macromolecules, about
molecular surface corrugation, and about the linearity of size
measures. We find that smooth size measures (Rg or Rext, the
radius of maximal extent defined below) yield similar low
dimensions. A length measure that takes into account molecular
surface corrugation (the average radius Ravg defined below)
yields dimensions closer to three. Therefore, molecular voids
and surface corrugations obey analogous scaling laws. Our
analysis using a “Swiss cheese” model also reveals that the
energy of void volumes must depend on macromolecular size;
it cannot be simply a function of void size, such as a Boltzmann
distribution, whose energy depends on void volume or void
surface area. Voids in the interior of a larger structure “know”
they are in a large structure. Finally, we re-examine the packing
as a function of distance from the center of mass of macro-
molecules. By using smaller embedded spheres than those used
in past work, we find that there is no significant scaling of
dimension with closeness to the surface. Rather, very strong
surface corrugation leads to underestimates of the bulk fractal
dimension near the surface by the embedded sphere method,
whereas the dimension is overestimated by the ensemble
method.

To understand these results, we propose the following
interpretation: molecular structures can be classified by whether
they approach the limit of homogeneous packing (D ) 3) or
the limit of Apollonian packing (D ) 2.47). Homogeneous
packing arises when similar-size objects are packed near-
optimally (e.g., liquids) or optimally (crystals). Apollonian
packing arises when objects with a hierarchical size distribution
(fewer large ones than small ones) are packed optimally. How
would such a hierarchy of length scales arise in molecules
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because the atoms are all about the same size? Atom connectiv-
ity provides the answer. Large molecules are built up along a
well-defined hierarchy of length scales, starting with atoms, then
on to functional groups and side chains, and on to monomer
units, secondary structures (local organization), and finally
tertiary structures (global packing). This hierarchy of sizes
caused by the constraints of bond connectivity hinders homo-
geneous packing and drives the molecular packing dimension
closer to the Apollonian limit. With DV ≈ 2.7, the interior of
molecules appears to lie about halfway between these crystalline
and Apollonian limits.

Methods

Databases and Molecules Used. Our sample set is composed
of a variety of molecular structures including proteins (∼91%),
viruses (∼8%), ribosomes (∼0.4%), and lipid layers (∼0.4%)
covering a wide range of shapes and sizes. All in all, 2752
structures, with the number of atoms ranging from ∼200 to
∼1 000 000 are included. About 2250 protein structures were
picked from the 25% threshold list (October 2008) of PDBSE-
LECT to avoid redundancy.7 The remaining structures were
generated using PDBSELECT for consistent representation of
larger molecules. The viruses (listed at VIPERdb)8-10 and
ribosomal structures are from the Protein Data Bank,7 and the
equilibrated lipid structures are from Tielemann and coworkers.11,12

Excluded van der Waals Volume. V was calculated as
follows: The pdb coordinates are superimposed onto a 3D grid
with 0.025 nm sized cubic voxels. Every voxel whose center
falls within the van der Waals radius of any atomic center is
considered to be occupied. V is calculated as the sum of the
volumes of all occupied voxels. This method takes into account
overlapping van der Waals radii of bonded atoms and empty
spaces. The results in this article are for backbone atoms with
effective van der Waals diameters adopted from VMD.13 We
also studied the effect of adding hydrogen atoms using the
autopsf plugin of VMD and found no significant effect on the
scaling laws (2.5% variation in dimensions calculated).

Scaling and Definition of the Length Scales L ) Rg, Rext,
Ravg. The scaling of the excluded van der Waals volume (V)
with size is given by

Here L is a size measure (length scale) and DV is the volume
fractal dimension.

We use three different size measures. The radius of gyration
Rg, used by Leitner and coworkers,3 is the mass-weighted root-
mean-squared position vector averaged over all atoms in the
structure and is given by

where mi is the atomic mass and ri is the position vector from
the center of mass.

The exterior radius, Rext, is the maximum extent of the
molecular structure along the coordinate axes (qj ) x, y, z) as
used by Dill and coworkers2

For the purpose of a scaling law exponent, it does not make
much difference whether the axes are the principal axes of the
molecule.

Finally, we introduce Ravg ) 〈ri〉surface, the average surface
radius defined as the mean distance of all surface atoms from
the center of mass. We identified surface atoms by placing the
molecule over a sufficiently fine 2D grid in several orientations
(x-y, y-z, and x-z), and identifying all of the first and last atoms
intersected by lines perpendicular to the grid.

Dimensional Analysis. We computed the volume dimension,
DV, used by Dill2 by two different approaches. As a check, we
also computed the mass dimension, Dm, used by Leitner and
Klafter by both approaches3,5 and found that it always agreed
with DV within 0.01, so we discuss only DV henceforth.

The first approach is the ensemble method: the van der Waals
excluded volume of each structure was plotted against one of
the three length measures, L, discussed above. A linear fit to
the log-log plot was used to obtain DV from eq 1. The
dimension thus obtained is a collective property of the molecular
ensemble studied.

In the second approach, we computed DV using the embedded
sphere method of Leitner and coworkers.3 This allows a
dimension to be determined for every individual molecule. A
sphere of variable diameter is embedded within the molecule,
and the log of the enclosed excluded van der Waals volume is
plotted against the log of the embedded sphere radius. A linear
fit of mass versus sphere radius yields the fractal dimension
DV

(i) of the molecule “i”. This is then averaged over various
atomic centers within the molecule, yielding, for example, D10%

(i)

for the 10% of backbone atoms closest to the center of mass of
the molecule, D20%

(i) for the closest 20% out from the center of
mass, and so on. To avoid surface effects, we restricted the upper
limit of the embedded sphere radius to be Rg or even 0.3Rg,
and the lower limit is fixed at 0.5 nm. By increasing the
percentage X in the subscripts above, shells of atoms closer to
the center or to the periphery of the molecule could be studied
to look at packing in the interior versus near the surface.

Results

Smooth measures of molecular size (L ) Rg or Rext) yield a
fractal volume dimension of molecules and molecular assemblies
significantly less than 3. Figure 1 shows the fit to the raw data.
The logarithm of the van der Waals volume is plotted against
the logarithm of the length scale in nanometers. The smallest
molecule in this plot is a peptide of 200 atoms. The largest
molecular assembly is a virus particle with 812 340 atoms.11,12

The three measures of size (Rg, Rext, and Ravg) yield values of
DV ranging from 2.4 to 2.7. Unfortunately, the raw data strongly

V ≈ LDV (1)
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Figure 1. van der Waals volume scaling versus size of 2752 molecules
and molecular assemblies, including 2500 proteins from the PDBSE-
LECT database. Three size measures are shown: radius of gyration
(blue), average surface radius (red), and exterior radius (black), as
defined in the Methods section.
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biases the fit toward medium-size proteins. Furthermore, the
increased likelihood of a larger length/volume ratio for mol-
ecules with <1000 backbone atoms (see below) tends to push
up the dimension for small molecules by this method.

When the size bias is removed, the dimensionality of
molecules with respect to a smooth measure of size is still
significantly less than 3. We removed the size bias by binning
molecules of different logarithmically spaced size ranges into
single data points (Figure 2) before fitting. We included only
molecules with >1000 backbone atoms in the fitting. The trend
already noted for Rg, Rext, and Ravg is observed in the binned
sample but with dimensions about 0.3 higher than those for the
raw sample. The dimensions obtained from Rg and Rext now
range from 2.71 to 2.78 within the 1σ uncertainties. As noted
in the Methods section, the volume and mass (not shown)
dimensions are nearly identical. This result is expected because
most of the backbone atoms in the molecular data set are second
row atoms of similar mass.

A significant difference in dimension persists for Ravg in the
binned data (Figure 2). The mass or volume dimension
associated with the average surface radius, Ravg, approaches 2.9.
This implies a scaling of Ravg relative to the other length scales,
for example

Compared with the radius of gyration and the radius of maximal
extent, the average surface radius is not quite a 1D measure of
size. As discussed below, Ravg is reduced by strong surface
corrugations (analogous to voids in the interior). The effects of
surface corrugation and interior void distribution nearly cancel,
yielding a dimensionality close to 3.

Figure 3A shows the volume dimension determined by the
alternative method of a sphere of variable radius fully embedded
within the molecule. The dimension is plotted against the
number of backbone atoms. When sample bias is removed by
binning in Figure 3B, the dimensions are ∼2.70 ( 0.05 for
molecules with N > 1000 backbone atoms.

We make the N > 1000 cutoff because many smaller
molecules have an elongated structure. The circle in Figure 3A
highlights this population of small molecules of lower dimen-
sion. The effect can also be discerned in Figure 1; there the
bottom edge of the distributions is feathered because of a
population of molecules with unusually large length-to-volume
ratio. Small elongated molecules cause computational artifacts
in the fractal bulk volume dimension. By the embedded sphere

method, the apparent dimension is too low because even the
smallest meaningful embedded spheres intersect the surface. By
the ensemble method, the apparent dimension is too high
because molecules of unusual length increase the slope below
log(L/nm) ) 0.2 in Figure 1.

Figure 3C shows a smoothed plot of a potential of mean force,
g, derived from the probability that a molecule with N heavy
atoms has a probability P of having volume dimension DV

A higher potential is associated with the smaller population of
extended molecules; nonetheless, a local minimum (circled)
occurs for small molecules. The energy function becomes
monomodal above about 1000 atoms, with a deep minimum at
DV ) 2.7.

Figure 2. van der Waals volume scaling versus size for binned size
distribution, removing any bias toward a certain molecular size. Three
size measures are shown: radius of gyration (blue), average surface
radius (red), and exterior radius (black), as defined in the Methods
section. Only molecules with N > 1000 backbone atoms were included
in the fits of the dimensions shown.

(Ravg

Ravg
(0) ) ) ( Rg

Rg
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Figure 3. (A) Volume dimension by the embedded sphere method as
a function of atom number in the molecule or molecular assembly.
The closest 10% of R carbons to the center of mass are used as centers
in the dimension calculations. A distinct population of lower dimen-
sionality is circled below N ≈ 1000 atoms. (B) Binned volume
dimensionality. (C) Effective potential as a function of volume
dimension and atom number derived from the population according to
eq 5.

g(DV, N) ) -kT ln[P(DV, N)] (5)
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We find that the fractal dimension of molecules is size-
independent and decreases at best minimally toward the
molecular surface in our large data sample (Figure 4). The use
of smaller embedded spheres (<0.3 Rg solid lines, versus Rg

markers in Figure 4) reduced sample bias caused by empty
spaces from surface corrugation being included in the embedded
spheres. The innermost shell produces D ) 2.7 for all but the
smallest molecules, which is in agreement with the ensemble
method and Enright and Leitner.3 As can be seen from the
random switching of the 10% (green) with respect to 30% (red)
dimensions in Figure 4, size-dependent features such as pores,
hinges, and multiple domains have a more pronounced effect
than the closeness of the probe sphere to the surface once surface
bias is removed.

Discussion

The larger data set with size bias removed supports the
previous finding of fractal mass or volume dimensions signifi-
cantly less than 3.2-4 By the ensemble method, we obtain
somewhat larger values of D than the smaller biased data sets.
Specifically, our Rg-derived average value is 2.71 ( 0.04
compared with that reported by the Leitner (2.56)3 and Zebende
(2.47)4 groups. Similarly, our Rext-derived value is larger than
that reported by the Dill group (2.42).2 With smaller biased data
sets, we obtain results identical to those of the previous studies.

The mass and volume fractal dimension trends by the
embedded sphere method are similar to those obtained by
Enright and Leitner3 on a set of 200 proteins. Our average
(DV

(i))10% for proteins with at least 1000 residues is 2.70 compared
with 2.73 reported for a smaller set of proteins.3 A trend of
decreasing dimension with increasing distance from the mo-
lecular center of mass (Figure 4, markers from 10 to 30%) has
been previously observed.3 However, this per se cannot be
interpreted as a decrease in packing efficiency near the surface.
The convergence of dimensions seen at large molecular sizes
in Figure 4 (dotted) as well as in ref 3 suggest that the apparent
trend is mainly an effect of surface corrugation. In fact, when
we reduce the maximum embedded sphere radii from Rg to 0.3Rg

so as not to intersect the surface (lines in Figure 4), there is no
reliable monotonic trend in the resulting fractal dimension, either
with molecular size or with percent from interior for large
molecules. Instead, the fluctuations with molecular size in Figure
4 arise from hinges, pores, and other molecular structural
features.

Having confirmed the <3 fractal dimensions from previous
reports, we consider several new consequences of a fractal
dimension DV ) 2.7. We discuss in turn: surface energy effects
at small molecular size, how Ravg scaling connects interior
corrugation (voids) and surface corrugation, and the fact that

the size distribution of voids cannot depend just on void size.
Finally, we propose a simple qualitative explanation for the
fractal dimension of molecules in terms of bond connectivity
and hierarchical packing.

At small molecular size, significant deviations from optimal
packing into a roughly spherical shape are observed: a family
of molecules with a high surface-to-volume ratio and an average
D as low as 1.5 exists, even though packing into a more compact
shape would be more favorable energetically by lowering the
van der Waals energy, hydrogen bonding energy, and other
interaction energies. These molecules owe their existence as
common structures to two factors. They are embedded in a
solvent, which reduces surface energy, and smaller size allows
stiffness at short persistence lengths to play a role, as observed
for the local extended structure favored by unfolded proteins.14

Therefore, surface tension does not rule molecular shape up to
about 1000 atoms (Figure 3A), after which structures tend to
be more “baggy” than “tubular”, and outliers of very low
dimension become rare.

Interior “corrugation” (voids) and surface corrugation scale
nearly the same way with molecular size. The evidence is that
smooth size measures (Rg, Rext) yield a volume dimension
smaller than 3, whereas a size measure that accounts for surface
corrugation (Ravg) yields a volume dimension close to 3. Volume
and surface area are still nearly related by A ∼ V2/3, although A
is not 2D, and V is not 3D.

A fractal volume dimension significantly less than 3 implies
that the probability of finding a void of a given size within a
molecule cannot depend just on void size. It has been proposed
that void probability scales as a simple Boltzmann factor15,16

with the void probability dependent on only the size of the void
carved from the interior of a molecule. If this were true, then
the void size distribution would have a characteristic mean value
independent of molecular size, and the dimensionality of
molecules would have to be 3. D ≈ 2.7 unambiguously proves
that larger molecules have a longer tail of large voids than do
smaller molecules. Even the near-spherical viruses, where
surface shape does not play a role, nearly produce D ) 2.7, as
does the analysis in Figures 3 and 4 that eliminates molecular
surface effects entirely. Therefore, the energy of voids depends
on not only the immediate atomic neighborhood from which
they were carved but also the overall molecular size.

To test this observation numerically, we simulated a “Swiss
cheese” model of molecules. In this model, we start with a solid
spherical molecule. Random size and position spherical cavities
were punched into the solid all the way from the center to the
edge, creating both voids and surface corrugation. By simulating
spherical molecules of different sizes with a constant void
density, as determined by Liang and coworkers,2 we checked
the scaling of the occupied volume with different length scales.
Using a size distribution of voids given by eq 6, the dimension
derived from all three length measures is 3.00 ( 0.05 for any
choice of energy function (e.g., E ≈ Rvoid

3 ) and prefactor �. When
we use scaling that allows larger voids in larger molecules, such
as

(e.g., R ) 1.5, � ) 50) we obtain scaling laws for Rg and Rext

in perfect agreement with Figure 2. By using the actual solid

Figure 4. Volume dimension (DV)X% calculated by the embedded
sphere method for X ) 10-30%. The maximal radius of the embedded
sphere is set to Rg (dotted) or 0.3Rg (solid).

P ≈ e-�Evoid(Rvoid) (6)

P ≈ e-�(Rvoid/Rext)R (7)
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molecular envelopes from our sample set instead of solid spheres
to better represent the largest scale molecular surface corruga-
tion, we can also reproduce DV(Ravg) > DV(Rg) ≈ DV(Rext).

Why can voids in molecules not be treated like independent,
Boltzmann-distributed objects? In a related question, why should
molecules not be thought of as a fluid near the percolation
threshold, as has been suggested because the percolation
threshold dimension also happens to be less than 3?

The answer is that the atoms in the bag are connected into a
hierarchy of different-sized groups. The hierarchy ranges from
single atoms, to functional groups, all the way up to secondary
and tertiary structure elements. When connected molecular
pieces of different size come into contact, molecular structure
becomes energetically frustrated because not all surfaces can
make optimal contacts as a result of the connectivity constraints.
Such frustration does not exist in homogeneous materials, such
as crystals or fluids assembled from similar-sized objects.
Frustration energy builds up with molecular size as more
clashing constraints need to be satisfied, resulting in large voids.
The consequence of larger voids in larger molecules is a fractal
mass or volume dimension substantially less than 3. Beyond
the size of the largest hierarchical grouping, the volume
dimension has to revert to 3. Perhaps the largest virus in Figure
2 (top right of plot) is finally approaching this limit because it
is shifted toward a slightly larger slope than the smaller
macromolecules and assemblies.

We can thus consider molecules to lie between two extremes:
At one extreme, we have a fluid or crystal of equal-size groups,
and the dimension 3 is reached. Diamond would be a good
example of such a “molecule”. At the other extreme, we have
molecules as a random jumble of groups of many sizes: atoms,
functional groups, residues, secondary structures, and finally
tertiary folds as we move up the size hierarchy. The packing
would then resemble Apollonian packing of dimension 2.47.17

Apollonian packing corresponds to the densest possible packing
of objects with a wide size distribution (In its simplest form,
Apollonian packing describes spheres of many sizes.) The actual

dimension we find for molecules, DV ) 2.7, lies between these
extremes. Molecules pack better than completely random-sized
objects but not as well as equal-sized unconnected spheres.
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